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ABSTRACT
The paper presents theory, algorithms, measurements of ex-
periments, and simulations for detecting rare geospatial events
by analyzing streams of data from large numbers of hetero-
geneous sensors. The class of applications are rare events -
such as events that occur at most once a month - and that
have very high costs for tardy detection and for false pos-
itives. The theory is applied to an application that warns
about the onset of shaking from earthquakes based on real-
time data gathered from different types of sensors with vary-
ing sensitivities located at different points in a region. We
present algorithms for detecting events in Cloud comput-
ing servers by exploiting the scalability of Cloud comput-
ers while working within the limits of state synchronization
across different servers in the Cloud. Ordinary citizens man-
age sensors in the form of mobile phones and tablets as well
as special-purpose stationary sensors; thus the geospatial
distribution of sensors depends on population densities. The
distribution of the locations of events may, however, be dif-
ferent from population distributions. We analyze the impact
of population distributions (and hence sensor distributions
as well) on the efficacy of event detection. Data from sensor
measurements and from simulations of earthquakes validate
the theory.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; G.3 [Probability and Statis-
tics]: Experimental Design

General Terms
Algorithms, Design, Experimentation

Keywords
seismology, paas, cloud, sensor networks
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1. INTRODUCTION

A Grand Challenge.
A grand challenge for distributed event-based (DEB) sys-

tems is helping communities sense and respond to global
calamities such as earthquakes, tsunamis, nuclear radiation,
and fires [1]. DEB systems can help save many thousands of
lives by rapid, accurate detection of events and dissemina-
tion of warnings to people and systems that must respond
quickly. This paper presents theory, architecture, and early
experience with one grand challenge: applications that help
the community respond to earthquakes. Rapid detection of
near-field earthquakes also helps in early warning of close
offshore tsunamis.

Community-Based Event Detection.
We describe a DEB system in which the community, as

a whole, helps to sense and respond to rapidly unfolding
events. All members of a community are effected by earth-
quakes, tsunamis, nuclear reactor meltdowns, and fires. An
effective DEB system must involve all members of the com-
munity as well as agencies charged with first response. Equip-
ping ordinary citizens with sensors and enabling them to
contribute data to a system has problems [2] — the data is
likely to be noisy; the same type of sensor, operated by dif-
ferent people, may behave in very different ways; and open
systems are also more open to spoofing and attacks. We
explore problems of community-based DEB systems.

Detecting Events with Phones and Low-cost Sensors.
The recent trend towards smart phones and other Internet-

enabled devices offers unique possibilities for decentralized
event detection. Smart phones contain a rich suite of sen-
sors, such as GPS, accelerometers, and cameras that can
gather information about a variety of geospatial phenom-
ena. Smart phones, tablets and laptops have accelerometers
that are being used by our project and others [3, 4] to obtain
seismic measurements.

Cellphone coverage is increasing dramatically in all parts
of the world, including regions such as Haiti that suffer from
devastating earthquakes and have populations with less dis-
posable income. Further, the cost of MEMS accelerometers
and other sensors continues to drop due to their mass-market
use in video game systems. We speculate that smart phones
will become less expensive and will be adopted in greater
numbers in developing economies in the coming decades.



The widespread use of digital communication/computing
devices and decreasing costs of sensors allows for the de-
velopment of dense sensor networks where the sensors are
owned and operated by individuals in the community. To
capitalize on the pervasiveness of these sensors, systems must
be prepared to deal with high sensor densities, and conse-
quently, large numbers of distributed event publishers. The
incoming events must be managed accurately and rapidly if
the information generated is to be of use in mitigating the
damaging effects of disasters.

Event-Based Systems in the Cloud.
Platform-as-a-Service (PaaS) cloud computing systems can

be valuable components of DEB systems. An advantage of
cloud computing systems is that they are distributed so that
events such as earthquakes and tsunamis do not destroy the
infrastructure. Just as importantly, cloud computing sys-
tems can be accessed by any point on the globe with In-
ternet access. Some regions that have suffered devastating
earthquakes — such as Haiti, Lima Peru, and Gujarat State
in India — do not have dedicated seismic networks; how-
ever, they do have access to the Internet, and as a conse-
quence can use cloud computing systems distributed around
the globe for helping to respond to calamities. PaaS systems
have limitations too, and this paper describes some of these
limitations and how they can be overcome.

Our work focuses on how event detection with very large
numbers of publishers can be performed on a distributed de-
tection platform with the imposed architectural limitations
described in Section 3. Specifically, we explore how limits
on data access and synchronization imposed in the name of
scalability affect the algorithms used to perform detection
of ongoing events.

Geospatial-Temporal Analysis for Event Detection.
Responding to earthquakes requires analysis of data over

multiple complex geospatial and temporal scales. For ex-
ample, a rupture along the San Andreas fault, on the West
Coast of the U.S., can travel hundreds of kilometers, but
first responders need information about building damage at
the block-by-block level. We present a data structure — the
“geocell” — that is well suited to the range of spatial scales.
Using the geocell, we present theory and experimental evi-
dence for detecting events over large geospatial regions over
time, and shows how events are detected over time series in
a distributed manner.

Designs of Event-Based Cyber Physical Systems.
Event detection systems often focus on reliable in-order

delivery of events from publishers to ensure that described
events are detected. In this paper, we evaluate the use of un-
reliable sensors as event publishers and explore the process
of event detection using out of order messages with no guar-
antee of delivery. The event publishers all possess different
reliability characteristics, owing to differences in both the
type of sensor and the environmental conditions in which
each sensor is installed. The sensors used in the network
are described in detail in Section 6, as well as how their
reliability affects detection performance.

There is a design tradeoff between the amount of data that
should be communicated and where data should be stored.
For example, a cellphone can send raw accelerometer data
continuously to cloud computing servers; this approach is
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Figure 1: Overview of the CSN architecture.

not cost effective with over a million phones in a region such
as Los Angeles. An alternate approach is for a phone to
carry out simple event detection and send a short message
when it detects an event. Seismologists refer to the detection
of an event by a sensor as “picking” an event, and refer to
the event data as a “pick.” One of the many questions is
what information should be sent to servers with each pick.

DEB systems that help respond to physical events such
as earthquakes use models of the underlying physical envi-
ronment — in our case, models and theories of seismological
structures. The model of the physical environment is cou-
pled with models of the cyber infrastructure to predict how
a given system design will behave. In Section 7, we analyze
of the combined cyber and physical layers.

2. COMMUNITY SEISMIC NETWORK
We are building an experimental seismic event detection

platform that utilizes a large number of lower quality sensors
rather than the small number of high quality sensors tradi-
tionally employed by organizations such as the USGS. To
obtain the envisioned density of sensors, the CSN recruits
volunteers in the community to host USB accelerometer de-
vices in their homes or to contribute acceleration measure-
ments from their existing smart phones. The goals of the
Community Seismic Network (CSN) include measuring seis-
mic events with finer spatial resolution than previously pos-
sible, and developing a low-cost alternative to traditional
seismic networks, which have high capital costs for acquisi-
tion, deployment, and ongoing maintenance.

The CSN is designed to scale to an arbitrary number of
community-owned sensors, yet still provide rapid detection
of seismic events. It would not be practical to centrally
process all the time series acceleration data gathered from
the entire network, nor can we expect volunteers to dedi-
cate a large fraction of their total bandwidth to reporting
measurements. Instead, we adopt a model where each sen-
sor is constrained to send fewer than a maximum number of
simple event messages (“picks”), per day to an App Engine
fusion center. These messages are brief, containing only the
sensor’s location, event time, and a few statistics such as the
peak observed acceleration. The process of pick detection is
discussed in Section 5. Due to privacy constraints, decen-
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Figure 2: How sensor density affects the detection
of seismic waves.

tralized algorithms with a trusted center may be preferred
to distributed implementations, where phones are required
to know the identity of other members of the network.

An overview of the CSN infrastructure is presented in Fig-
ure 1. A cloud server administers the network by performing
registration of new sensors and processing periodic heart-
beats from each sensor. Pick messages from the sensors are
aggregated in the cloud to perform event detection. When
an event is detected, alerts are issued to the community.

Dense Community Network.
There are several advantages to a dense community net-

work. First, higher densities make the extrapolation of what
regions experienced the most severe shaking simpler and
more accurate. In sparse networks, determining the mag-
nitude of shaking at points other than where sensors lie is
complicated by subsurface properties. As you can see in
Figure 2, a dense network makes visualizing the propaga-
tion path of an earthquake and the resulting shaking sim-
pler. With a dense network, we propose to rapidly generate
a block-by-block shakemap that can be delivered to first re-
sponders within a minute.

Second, community sensors owned by individuals working
in the same building can be used to establish whether or
not buildings have undergone deformations during an earth-
quake which cannot be visually ascertained. This type of
community structural modeling will make working or living
in otherwise unmonitored buildings safer.

Lastly, one of the advantages of relying on cheap sensors
is that networks can quickly be deployed to recently shaken
regions for data collection or regions which have heretofore
been unable to deploy seismic network because of cost con-
siderations. As the infrastructure for the network lies en-
tirely in the cloud, sensors deployed in any country can rely
on the existing infrastructure for detection. No new infras-
tructure will need to be acquired and maintained, rather,
one central platform can be used to monitor activity in mul-
tiple geographies.

3. SYSTEM INFRASTRUCTURE
Rather than relying on a parallel hardware platform for

streaming aggregation[5], our work focuses on the use of the
often constrained environments imposed by Platform-as-a-
Service (PaaS) providers for event aggregation. In this work,
we focus specifically on Google’s App Engine[6]. App Engine
provides a robust, managed environment in which applica-
tion logic can be deployed without concern for infrastructure
acquisition or maintenance, but at the cost of full control.
App Engine’s platform dynamically allocates instances to
serve incoming requests, implying that the number of avail-
able instances to handle requests will grow to match demand
levels. For our purposes, a request is an arriving event, so

it follows that the architecture can be used to serve any
level of traffic, both the drought of quiescent periods and
the flood that occurs during seismic events, using the the
same infrastructure and application logic.

However, App Engine’s API and overall design impose
a variety of limitations on deployed applications; the most
important of these limitations as it concerns event processing
are the following.

3.1 Synchronization limitation
Processes which manage requests are isolated from other

concurrently running processes. No normal inter-process
communication channels are available, and outbound re-
quests are limited to HTTP calls. However, to establish
whether or not an event is occurring, it is necessary for
isolated requests to collate their information. The remain-
ing methods of synchronization available to requests are the
use of the volatile Memcache API, the slower but persistent
Datastore API, and the Task Queue API.

Memcache’s largest limitations for synchronization pur-
poses are that it does not support transactions or synchro-
nized access and that it only supports one atomic operation:
increment. Mechanisms for rapid event detection must deal
with this constraint of Memcache. More complex interac-
tions can be built on top of the atomic increment operation,
but complex interactions are made difficult by the lack of
a guarantee that any particular request ever finishes. This
characteristic is a direct result of the timeframe limitation
discussed next.

The Datastore supports transactions, but with the limi-
tation that affected or queried entities must exist within the
same Entity Group. For performing consistent updates to
a single entity, this is not constraining, but when operat-
ing across multiple affected entities, the limitation can pose
problems for consistency. Entity Groups are defined by a
tree describing ownership. Nodes that have the same root
node belong to the same entity group and can be operated
on within a transaction. If no parent is defined, the entity
is a root node. A node can have any number of children, as
can its own children.

This imposes limitations because groups can only have one
write operation at a time. Large entity groups may result
in poor performance because concurrent updates to multi-
ple entities in the same group are not permitted. Designs
of data structures for event detection must tradeoff concur-
rent updates against benefits of transactional integrity. High
throughput applications are unlikely to make heavy use of
entity groups because of the write speed limitations.

Task Queue jobs provide two additional synchronization
mechanisms. First, jobs can be enqueued as part of a trans-
action. For instance, in order to circumvent the transac-
tional limitations across entities, you could execute a trans-
action which modifies one entity and enqueues a job which
modifies a second entity in another transaction. Given that
enqueued jobs can be retried indefinitely, this mechanism
ensures that multi-step transactions are executed correctly.
Therefore, any transaction which can be broken down into
a series of steps can be executed as a transactional update
against a single entity and the enqueueing of a job to per-
form the next step in the transaction.

Second, the Task Queue creates tombstones for named
jobs. Once a named job has been launched, no job by that
same name can be launched for several days. The tomb-



stone that the job leaves behind prevents any identical job
from being executed. This means that multiple concurrently
running requests could all make a call to create a job, such
as a job to generate a complex event or send a notification,
and that job would be executed exactly once. That makes
named Task Queue jobs an ideal way to deal with the request
isolation created by the App Engine framework.

3.2 Timeframe limitation
Requests that arrive to the system must operate within a

roughly thirty-second timeline. Before requests hit the hard
deadline, they receive a catchable DeadlineExceeded excep-
tion. If they have not wrapped up before the hard deadline
arrives, then an uncatchable HardDeadlineExceeded excep-
tion is thrown which terminates the process. Prior work[7]
indicates that factors outside of the developer’s control can
create a timeout even for functions which are not expected to
exceed the allocated time. Therefore, it is quite possible for
a HardDeadlineExceeded exception to be thrown anywhere
in the code, including in the middle of a critical section.
For this reason, developers must plan around the fact that
their code could be interrupted at any point in its execution.
Care must be taken that algorithms for event detection do
not have single points of failure and are tolerant to losses of
small amounts of information.

3.3 Query limitation
Several query limitations are imposed on Datastore queries.

The most important limitation is that at most one property
can have an inequality filter applied to it. This means, for
instance, that you cannot apply an inequality filter on time
as well as an on latitude, longitude, or other common event
parameters. We discuss our solution to solving the problem
of querying simultaneously by time and location in Section 4.
Additionally, the nature of the Datastore makes traditional
join-style queries impossible, but this limitation is circum-
ventable by changing data models or data queries.

4. NUMERIC GEOCELLS FOR GEOSPATIAL
QUERIES

Since queries on App Engine are limited to using inequal-
ity filters on only one property, a different method is needed
for any form of geospatial queries. Our solution involves the
use of 8-byte long objects to encode latitude and longitude
pairs into a single number. This single number conveys a
bounding box rather than a single point, but, at higher res-
olutions, the bounding box is small enough that it can be
used to convey a single point with a high degree of accuracy.
We define the resolution of a numeric geocell to be the num-
ber of bits used to encode the bounding box. A resolution
14 geocell uses 14 bits, 7 for latitude and 7 for longitude, to
encode the resolution. A resolution 25 geocell uses 25 bits,
12 for latitude and 13 for longitude.

It’s important to note that the ratio of the height to the
width of a bounded area depends on the number of bits
used to encode latitude and longitude. For even-numbered
resolutions, an equivalent number of latitude and longitude
bits are used. For odd numbered resolutions, one additional
longitude bit is used. This permits bounding boxes with
different aspect ratios. An odd numbered resolution at the
equator creates a perfect square, while an even-numbered
resolution creates a rectangle with a 2:1 ratio of height to
width.
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Figure 3: How bounding boxes divide the coordinate
space.

Geocells are created using a latitude, longitude pair. This
is done by dividing the world into a grid and starting with
the (90◦S, 180◦W), (90◦N, 180◦E) bounding box, which de-
scribes the entire world. Each additional bit halves the lon-
gitude or latitude coordinate space. Odd numbered bits,
counting from left to right in a bit string, convey informa-
tion about the longitude, while even-numbered bits convey
information about the latitude. After selecting an aspect
ratio by choosing even or odd numbered resolutions, geo-
cells are made larger or smaller in increments of 2. This
means that each larger or smaller geocell selected will have
the same aspect ratio as the previous geocell.

For this reason, each bit pair can be thought of as de-
scribing whether the initializing point lies in the northwest,
northeast, southwest, or southeast quadrant of the current
bounding box. Subsequent iterations use that quadrant as
the new bounding box. To work a simple example, con-
sider (34.14◦N, 118.12◦W). We first determine whether the
desired point lies east or west of the mean longitude and
then determine whether it lies north or south of the mean
latitude. If the point lies east of the mean longitude, the
longitude bit is set to 1, and if the point lies north of the
mean latitude, the latitude bit is set to 1. In our example,
the point lies in the northwest quadrant, yielding a bit pair
of 01 for a resolution of 2. Iterating through the algorithm
yields the following bits for a resolution of 28:

0100110110100000010000000101

For an illustration of how increasing resolution divides the
coordinate space, see Figure 3. Because these representa-
tions are stored as fixed-size numbers, the resolution of the
geocell must also be encoded. Otherwise, trailing zeros that
are a result of a less than maximum resolution would be in-
distinguishable from trailing zeros that represent successive
choices of southwest coordinates. Therefore, the last 6 bits
of the long are used to encode the resolution. The other 58
bits are available for storing resolution information.

For space considerations, we also have an integer repre-
sentation capable of storing resolutions from 1 to 27 using 4
bytes, as well as a URL-safe base64 string based implemen-



tation that uses a variable number of bytes to store resolu-
tions from 1 to 58. The integer implementation uses 5 bits to
store the resolution, and the remaining 27 bits are available
for resolution information. The string based implementation
always encodes the resolution in the final character, occu-
pying 6 bits of information in 1 byte, while the remaining
characters encode the resolution information.

Our analysis of geocell sizes at various resolutions led us to
the conclusion that the most useful geocell sizes for event de-
tection were resolutions 12 through 28. Resolution 29 ranges
from 1.5 kilometers square to 0.65 kilometers square depend-
ing on the point on earth (see Limitations) and is too small
to be useful for aggregation in all but the densest networks.
Resolution 12 is quite large, encompassing anywhere from
84,000 square kilometers to 195,000 square kilometers. This
resolution is still useful for aggregation of extremely rare
events that may be spread out over a large region.

4.1 Comparison
Two similar open methods of hashing latitude and longi-

tude pairs into simple strings have been previously proposed:
GeoModel[8] and Geohash[9]. Our algorithm is capable of
translating to and from representations in both systems. Nu-
merous other systems exist; however, many are variations
on a similar theme, and the earlier systems not designed for
computer derivation each suffer from different shortcomings.
The UTM[10] and MGRS[11] systems not only have a com-
plicated derivation algorithm[12] but also suffer from excep-
tions to grid uniformity. The GARS[13] and GEOREF[14]
system utilize an extremely small number of resolutions: 3
and 5, respectively. The NAC System[15] is proprietary and
has different aims, such as being able to encode the altitude
of a location.

GeoModel, Geohash, and our own system all bear similar-
ity to the well known quad tree algorithm for storing data.
All of these algorithms rely on dividing the plane into sec-
tions: quad tree algorithms divide the plane into quadrants,
our own algorithm divides the plane into 2 sections per res-
olution while GeoModel and Geohash divide the plane into
16 and 32 sections respectively. While the algorithm for
finding a storage point in a quad tree is the same, what the
other algorithms actually compute is equivalent to the path
to that storage point in a quad tree with a storage depth
equal to the resolution. The focus of the quad tree method
is on the in-memory storage of spatial datapoints, while the
focus of the other algorithms is computing an effective hash
for datapoints. The path serves at that hash.

Our numeric geocells have one key advantage over the
Geohash and GeoModel algorithms: the numeric represen-
tation allows for the description of a broader range of res-
olutions. GeoModel and Geohash encode 4 and 5 bits of
information per character, respectively, using the length of
the character string to encode the resolution. Numeric geo-
cells therefore have 4 to 5 times more expressive power in
possible resolutions.

Resolution density has a strong impact on the number of
cells required to cover a given region or the amount of extra
area selected by the cells but not needed. When selecting
cells to cover a region, it is possible that several smaller geo-
cells could be compressed into one larger geocell. This can
happen more often when more resolutions are available. For
instance, 16 GeoModel cells and 32 Geohash cells compress
into the next larger cell size, where only 4 numeric geocells

compress into the next larger numeric geocell (when main-
taining aspect ratio). This comes at the expense of having
to store more resolutions in order to perform the compres-
sion. Section 4.3 contains more information on the selection
of geocells to query.

Space filling curves, such as the Hilbert curve, can pro-
vide similar advantages by using an algorithm to ascribe ad-
dresses to all the vertices in the curve. Whatever advantage
these curves might have derives from their visitation pat-
tern, which can yield better aggregation results for queries
that rely on ranges. Our query model utilizes set mem-
bership testing for determining geographic locality, which
means that we cannot derive a benefit from the visitation
pattern of space filling curves. We rely on the simpler hash
determination method used in quad trees instead.

4.2 Limitations
Because they rely on the latitude and longitude coordinate

space, numeric geocells and similar algorithms all suffer from
the problem that the bounded areas possess very different
geometric properties depending on their location on Earth.
The only matter of vital importance is the coordinate’s lat-
itude; points closer to the equator will have larger, more
rectangular geocells while points farther from the equator
will have smaller, more trapezoidal geocells.

Algorithms which rely on the geometry of the geocells, if
applied globally, will not operate as expected. Instead, algo-
rithms must be designed without taking specific geometries
into account, or must be tailored to use specific resolutions
depending on the point on earth. In the following table, we
compare the size, in terms of area, of four different locations.
The area is expressed as a ratio of the size to Jakarta, the
site used with the largest geocells. Geocells of any resolution
converge to this ratio between sizes beginning with resolu-
tion 16. The ratio of the height to the width is also included
for both even and odd resolutions.

Jakarta Caltech London Reykjavik
A:Jakarta 1 0.83 0.63 0.44
H:W Even 1.99 1.66 1.24 0.87
H:W Odd 0.99 0.83 0.62 0.44

Finally, prefix matching with any of these algorithms suf-
fer from poor boundary conditions. While geocells which
share a common prefix are near each other, geocells which
are near each other need not share a common prefix. In
the worst case scenario, two adjacent geocells that are di-
vided by either the equator, the Prime Meridian or the 180th
Meridian will have no common prefix at all. For this reason,
geocells are used exclusively for equality matching.

4.3 Queries
When querying for information from the Datastore or

Memcache, geocells can be used to identify values or entities
that lie within a given geographic area. A function of the
numeric geocell library allows for the southwest and north-
east coordinates of a given area, such as the viewable area of
a map, to be given and returns a set of geocells which covers
the provided area. Given that no combination of geocells
is likely to exactly cover the map area, selecting a geocell
set to cover a specified area is a compromise between the
number of geocells returned and the amount of extraneous
area covered.

With smaller geocells, less area that is not needed will
be included in the returned geocells, however, more geocells



Figure 4: Combining geocells of multiple resolutions
to cover an area.

will be required to cover the same geographical area. Larger
geocells will require a smaller number of geocells in the set,
but are more likely to include larger swaths of land that
lie outside the target region. Balancing these two factors
requires a careful choice of cost function which takes into
account the cost of an individual query for a specific size,
which depends on the network density.

With a low density, smaller numbers of queries across
larger parcels of land are optimal as discarding the extra-
neous results is less costly than running larger numbers of
queries. With very high sensor densities, too many extrane-
ous results may be returned to make the extra land area an
efficient alternative to a larger number of queries, and so re-
ducing the size of the geocells to help limit the area covered
is helpful.

Another feature of numeric geocells is that smaller cells
can be easily combined to form larger cells. If an object
stores the geocells that it exists within at multiple resolu-
tions, then any of those resolutions can be used for deter-
mining whether or not it lies within a target geographical
area. The algorithm for determining the set of geocells to
query can then combine several smaller geocells into larger
geocells, which allows larger geocells to be used in the inte-
rior of the map with smaller geocells along the exterior.

For instance, Figure 4 shows how smaller geocells can be
combined into larger geocells of varying sizes. Importantly
for our purposes, the determination of neighboring geocells is
a simple and efficient algorithm. By using minor bit manip-
ulations, it is possible to take a known geocell and return the
geocell adjacent to it in any of the four cardinal directions.
This means that if an event arrives at a known location, not
only can the cell that the event belongs to be easily iden-
tified but also the neighboring cells. This factors in to our
event detection methods, which are described next.

5. DECENTRALIZED DETECTION WITH
COMMUNITY SENSORS

The CSN system performs decentralized detection of seis-
mic events by allowing each individual sensor to generate

picks of potential seismic events and then aggregating these
pick messages by geocell in the cloud to determine if and
where an event has occurred. The different algorithms used
at the sensor and server levels are discussed next.

5.1 Sensor-side Picking Algorithms
Different sensor types are likely to experience different en-

vironmental and noise conditions, and so different picking al-
gorithms may be best suited to particular sensor types. We
studied two picking algorithms: the STA/LTA algorithm,
designed for higher-quality sensors in relatively low-noise
environments, and a density-based anomaly detection algo-
rithm suited to handling the complex acceleration patterns
experienced by a cell phone during normal daily use. These
algorithms are described in detail in [16] and summarized
here.

Event Detection using Averages: STA/LTA.
STA/LTA (Short Term Average over Long Term Average)

computes the ratio between the amplitude of a short time
window (STA) and the amplitude of a long time window
(LTA) and decides to “pick” when the ratio reaches above a
threshold. In our analysis, we used a short term window size
ST = 2.5 s and a long term window size LT = 10 s. This
simple algorithm can detect sudden changes in transients
that may indicate the occurrence of an event in a low-noise
environment. In an ideal situation where the sensors have
fixed orientation, the signal on each axis can be used to
derive the direction of the incoming wave. We do not assume
consistent orientation here, but instead simply take the L2
norm of all three axes before computing the STA/LTA.

Anomaly Detection using Density Estimation.
Earthquakes are rare, complex natural phenomena, and

consequently are difficult to model. Further, heterogeneous
community sensors such as cell phones differ widely in qual-
ity and reliability due to varying hardware and software plat-
forms, as well as differing environmental conditions. How-
ever, sensory data in the absence of earthquakes is plentiful,
and can be used to accurately estimate a probability distri-
bution over normal observations. This density estimate is
then used to identify anomalies (observations assigned suffi-
ciently low probability by the model) and transmit them as
picks to the fusion center.

Phones frequently change their orientation, producing large
changes in signal as the sensor rotates relative to gravity.
This effect can be removed by automatically determining the
phone’s orientation. A decaying average is used to estimate
the direction of gravity. The data is rotated to point the
gravity component in the negative Z direction, and then the
acceleration due to gravity is removed. While this process
reliably orients the phone’s Z axis, the other axes cannot be
consistently oriented. Instead, the Euclidean norm ||X,Y ||2
of the remaining components, which is invariant to rotations
about the Z axis, is computed.

Processing accelerometer time series within the computa-
tional limits of smart phones requires a concise and infor-
mative representation of the raw data. A 3-axis Android ac-
celerometer produces ≈ 50-100 samples per axis each second.
The raw acceleration stream is broken into 1 second time
windows, and a feature vector is computed to summarize
the data in each window. The feature vector is formed by
first computing a vector of statistics: 16 Fourier coefficients,



the second moment, and the maximum absolute accelera-
tion for both the Z axis and the Euclidean norm ||X,Y ||2.
The final feature vector is obtained by projecting these 36
statistics onto the top 16 principal components computed
by PCA, and retaining the projection error as an additional
feature. We arrived at this choice of feature vector by ex-
tensive cross validation on acceleration data gathered from
volunteers’ Android phones.

Our anomaly detection requires a density estimate and
a probability threshold that separates normal data from
anomalies. We use a Gaussian mixture model for density
estimation. Model selection (number of Gaussians) and esti-
mation can be computed offline, and uploaded to the phones.
Due to the rarity of large earthquakes, nearly all anomalies
detected by a phone will be false positives resulting from un-
usual day-to-day motions. We use this fact to both control
the average number of messages sent by each phone and to
bound the rate of false positives reported. Each phone uses
online percentile estimation to learn a probability threshold
that classifies a desired fraction of the data as anomalies.
This fraction can be chosen according to bandwidth con-
straints and is precisely the sensor false positive rate.

5.2 Server-side Pick Aggregation
Picks generated by the sensors are sent to the App En-

gine server. These simple events are aggregated using the
numeric geocells described in Section 4. However, a few fac-
tors complicate complex event association and detection.

First, the time of App Engine instances is not guaranteed
to be synchronized with any degree of accuracy. This means
that relative time determination within the network must be
handled by clients if any guarantees about clock accuracy are
to be made. This is currently done through the inclusion of
an NTP client in the sensor software which determines the
drift of the host computer to the network time at hourly
intervals.

Second, requests may fail for a variety of reasons. We
have previously estimated that as many as 1% of requests
on App Engine will fail for reasons beyond the control of
the developer. These kinds of errors include requests that
wait too long to be served, hard deadline errors, and serious
errors with the App Engine servers. In addition to these
system errors, clients may go offline without notice due to a
software error or something as simple as the host computer
going to sleep.

These system conditions mean that the detection algo-
rithm must be: insensitive to the reordering of arriving mes-
sages, which occurs by variations in processing or queueing
time or by inconsistent determination of network time, and
insensitive to the loss of small numbers of messages either
due to client or server failures.

The server’s job is to estimate complex events such as the
occurrence of an earthquake from simple events that indi-
cate an individual sensor has experienced seismic activity.
This is done by estimating the frequency of arriving picks
by allocating arriving picks to buckets. Buckets are created
by rounding the pick arrival time to the nearest two seconds
and appending the geocell to the long representation of the
time. This gives a unique key with which a bucket is created
that all arriving picks in the same time window and region
will use to create estimates of the number of firing sensors at
that point in time. For instance, an example bucket name
would be ‘12e55d89260-4da040500000001c’.

This bucketing necessarily removes any ability to detect
events based on arrival order, but permits event detection
based on both arrival frequency and the content of arriving
events. Whenever a pick arrives, the appropriate bucket
name is calculated and the number of arriving events for
that bucket is incremented. The number of active clients for
location identified by the bucket’s key is also retrieved, which
makes it possible to determine the ratio of clients that have
experienced a seismic event. For each arrival, the contents of
the buckets of the current time window and the surrounding
time windows are summed to help manage inconsistencies
in arrival time and time of computation.

The sum of the arriving picks across a known time interval
is then divided by the number of active clients to determine
whether or not a specific geocell has exceeded a threshold
level of activity to perform further computation. This is the
first trigger which generates a complex event that a given
geocell has activated. Activation of the geocell is managed
by a Task Queue job which is created to proceed with fur-
ther analysis. The job is named, which means that for any
number of arriving picks in the same time window, only one
job will be created per geocell per time window.

The execution of the named job involves probing the sur-
rounding geocells to determine what other geocells have re-
cently fired. The total number of sensors reporting seismic
activity in any region for a given time window can be com-
puted by calculating the bucket names under which those
events would have been aggregated and summing their con-
tents. The sequence of activation is then used to extrapolate
what kind of event the network is experiencing. Of partic-
ular importance is the reliability of this detection, which is
discussed in Section 6.

6. ESTIMATING SENSOR PERFORMANCE
A question we are trying to answer is: are inexpensive sen-

sors capable of detecting seismic events? The CSN currently
uses two types of sensors: the accelerometers in Google An-
droid cell phones and 16-bit MEMS accelerometer USB sen-
sors manufactured by Phidgets, Inc. Measurements from a
variety of Android phones while at rest showed device noise
with standard deviation of ≈ 0.08 m/s2. Phidgets at rest
showed device noise with standard deviation ≈ 0.003 m/s2.
For reference, earthquakes of Gutenberg-Richter magnitude
4 produce accelerations of approximately 0.12 m/s2 close
to the earthquake’s point of origin. These numbers suggest
that cell phone accelerometers should be sensitive enough to
be able to detect large earthquakes.

Without waiting to observe several large earthquakes, we
can only estimate the performance of each picking algorithm
under several moderately large seismic scenarios. Detec-
tion performance on these simulated event recordings should
provide a lower bound on sensor performance during larger
events; this claim is experimentally validated in [16].

We obtain simulated acceleration time series recordings
for both Phidget and Android sensors by combining histor-
ical earthquake recordings from the USGS Southern Cali-
fornia Seismic Network (SCSN) with noise recordings from
volunteers’ Phidget and Android sensors. We collected a set
of 54 SCSN records of magnitude M5-5.5 earthquakes from
seismic stations between 0-100 km. The SCSN recordings
are down-sampled to 50 samples per second to be compa-
rable with low-end consumer accelerometers, and are then



overlaid with Phidget or Android recordings from the vol-
unteer data set in order to obtain a realistic noise profile.

6.1 Lower Bounds for Sensor Performance
Receiver Operating Characteristic (ROC) curves are used

to gain insight into the performance of a binary classifier.
The curve plots true positive rate (TPR) against false pos-
itive rate (FPR) for each possible decision threshold. ROC
curves allow us to estimate the obtainable TPR of a sensor,
given a constraint on its FPR, such as a limit on the average
number of pick messages per day.

Using the data set of synthetic historical recordings, we
can compute ROC curves for each sensor type, under a va-
riety of seismic scenarios. From a data set of magnitude
M = 5− 5.5 earthquakes, we extract 5 sets of records, con-
taining data from stations at varying distances away from
the epicenter. The data sets correspond to distance ranges d
in kilometers, d = {0−10, 20−30, 40−50, 70−80, 90−100}.
Figure 5 illustrates the performance of the the STA/LTA
algorithm (evaluated on synthetic records made with volun-
teers’ Phidget data), and the anomaly detection algorithm
(evaluated on synthetic records made with volunteers’ An-
droid data). These ROC curves demonstrate that the Phid-
gets - higher resolution sensors that are typically not sub-
jected to user motion - obtain superior performance to the
Android sensors at all distance ranges. The curves also re-
flect the 1/r2 decay rate of shaking intensity, where r is
distance from the quake epicenter.

6.2 Geocell Detection Performance
From the ROC of a single sensor, we can analyze the col-

lective behavior of a group of sensors. Consider a number
of sensors occupying a relatively small geocell (e.g. sev-
eral street blocks). Inside this cell, each sensor experiences
similar seismic shaking during an event, and independent
noise (such as motions caused by a cell phone’s user) in the
absence of an event. We can roughly say that all sensors
within a cell have the same signal to noise ratio (SNR) and
that their picks can be well approximated as independent,
identically distributed binary random variables when condi-
tioned on whether an event has occurred or not. By fixing
the decision rule for each sensor, and a decision rule for cell-
wide event detection, we can evaluate the event detection
performance as a function of the number of sensors in the
cell.

The sensor decision rules can be specified by constraining
the maximum allowable rate of false positive picks. Here,
we constrain the Phidget USB sensors to produce at most
1 false pick per hour, and constrain the Android sensors to
at most 1 false pick per 5 minute interval. The cell-wide
false positive rate is constrained to no more than 1 per year,
on average. Figure 6(a) and Figure 6(b) show cell detection
performance as a function of sensor density, generated from
synthetic M5-5.5 records. These results indicate that a cell
containing 30 Phidgets or 100 Androids could reliably detect
a moderately large earthquake at a distance of 50km from
the epicenter, and that the higher-quality Phidget sensors
are capable of detecting the signal from up to 100km.

6.3 System-wide Detection
While sensors within several kilometers of each other are

likely to experience similar shaking during an event and thus
have similar SNR, sensors distributed across a city or other

large region can be expected to behave quite differently. In
Section 7, we evaluate how system-wide detection perfor-
mance is impacted by aggregating picks using a grid of geo-
cells.

7. EXPERIMENTS
In this section, we describe simulation results that study

the detection performance of dense, heterogeneous seismic
networks during several earthquake scenarios. To simplify
the discussion, we restrict our focus on detection to a sin-
gle subcontinental area, e.g. the Greater Los Angeles Area
rather than the North hemisphere. This is reasonable, as
one can identify a priori clusters of sensors in different ge-
ographic regions so that there is little correlation between
clusters. We experimentally evaluate an event association
algorithm which aggregates picks by geocell, and compare
its performance against a baseline naive event association
algorithm which aggregates all pick messages within the re-
gion.

7.1 Simulation Platform
An earthquake is a complex event that differs in every

occurrence depending on where in the world it occurs. Sim-
ulators developed by seismologists often have a large number
of input parameters. In comparison, this study focuses on
capturing the behaviors of a large-scale network of noisy sen-
sors. Without loss of generality, we assume a much simpler
seismic model that includes a point source (i.e. the epicenter
is a single point) which is isotropic (i.e. the wave travels in
all directions with equal speed).

Based on the sensor characterizations described in Sec-
tion 6, we can begin to study the detection performance of
a total system with a given deployment of sensors. To aid
these studies, we have developed a simulation platform that
allows time series of sensor picks to be simulated, based on
a set of specified sensor TPR,FPR operating points. These
operating points can be chosen to maximize detection per-
formance, while satisfying the per-sensor bandwidth con-
straints.

Given the location of each sensor in the network and the
origin of a seismic event, the program computes the proba-
bility that each sensor picks during each time instance, and
generates picks with these probabilities to produce a time
series of pick messages. Figure 8 shows a snapshot of sim-
ulated detection of a M5.5 event. The snapshot is taken
20 seconds after the event occurs. For this simulation, the
Phidget FPR is set at 1 pick per hour and the Android FPR
is set to 1 pick every 5 minutes. The pick messages are
timestamped after factoring in network delays. The counts
of message arrived at the server in this specific simulation
run is shown in Figure 6(c) as a function of time from the
start of the event.

7.2 Naive Event Association
Section 5.2 describes a procedure for identifying if a single

geocell contains a significant number of picks within a small
interval of time. While the activation of one geocell could be
used to generate system-wide alerts, such a policy neglects
the physical laws governing how earthquakes spread.

In this section, we study the system level detection perfor-
mance, starting with a simple event association algorithm.

At each time step, the system decides whether an event
has occurred based on the pick messages it has received so
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Figure 5: ROC curves for (a) Phidget and (b) Android. (c) Detection performance vs. distance from epicenter
under the guarantee of at most 1 false message per hour for the Phidget and 1 false message every 5 minutes
for the Androids.
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Figure 8: Snapshot of simulated detection of a M5.5
event 80 km outside the great Los Angeles area.
There are 100 Phidgets and 1000 Androids dis-
tributed according to population density. The snap-
shot is taken 20 seconds after the event occurred.

far. One naive decision rule is to perform hypothesis testing
on the aggregated pick counts in the past few seconds, that
is, to compute the ratio of likelihood for the two hypothesis:
1) that there is an event (p = p1), and 2) that there is
no event (p = p0). In other words, the naive decision rule
performs the test

Binomial(k;n, p1)

Binomial(k;n, p0)
≥ r

where n is the total number of sensors in the system, k is
the number of picks observed in the past few seconds and
r is the decision threshold chosen to satisfy a constraint on
the system false positive rate. If the inequality holds, the
system declares detection.

This algorithm is naive because it disregards the varying
strengths of geospatial correlation between sensors as well
as the pattern in which seismic waves travel. Depending on
the distance and direction of the wave relative to the re-
gion of sensors, different number of sensors are affected at
a given time. Therefore it may not be reasonable to con-
sider measurements from all sensors equally at all times.
We will present a different association algorithm that ex-
ploits these behaviors in the next section. Here we study
the naive algorithm as a lower bound for the system level
detection performance.

We collected 1000 sets of measurements from 2000 An-
droids and 20 Phidgets separately during a simulated M5.5
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Figure 7: Regions of different sizes and shapes are activated in different sequence for each of the three
scenarios. The rainbow-colored rings indicate the order of activation. Red: first. Purple: last

event within 60 km of downtown Los Angeles. During a
period of T = 0 − 10 seconds after the event occurs, we
perform the naive association algorithm on each 2-second
interval and compute the system level detection rate while
maintaining the guarantee of at most 1 false alarm per year.
The results are shown in Figure 9 as the lower bounds for
the two types of sensors.

7.3 Geocell-based Regional Event Association
A seismic event can be very coarsely modeled as an isotropic

point source event that travels in all directions at a constant
speed. With this assumption in mind, we can break down
the detection problem into a few case scenarios in terms
of how the incoming waves come to contact with the iden-
tified cluster of sensors. By exploiting sensor co-activation
patterns in these scenarios, one can design a more logical on-
line event association algorithm. Figure 7 shows three such
possible cases after we pre-gridded the area into geocells —
(a) the epicenter is inside the cluster, (b) the epicenter is
diagonally away from the cluster, and (c) the epicenter is
on the side and away from the cluster. In each of these
cases, regions of different sizes and shapes will be activated
in different sequences during san event. While it is compu-
tationally nontrivial to partition a 2-dimensional space into
arbitrary regions, the geocell library provides the tools to
compute these regions efficiently. We can perform hypoth-
esis testing in parallel for each possible regions to improve
the system-wide detection performance.

We computed the system-wide detection performance for
each of the scenarios illustrated in Figure 7 with either 20
Phidgets or 2000 Androids distributed according to the pop-
ulation density in the area. The regions in terms of acti-
vation sequence are identified a priori using the geocell li-
brary. A region consists of multiple nearby geocells. Each
geocell is ≈ 10 × 10 km in size, which is approximately
how far the shock wave travels in 2 seconds. Two seconds is
also roughly the short-term integration window used in both
STA/LTA and anomaly detection algorithm. We can thus
safely assume that all sensors in the same region have the
same SNR and model them as independently identically dis-
tributed random variables, following the analysis in Section

6.2. In each time step of 2 seconds, we perform hypothesis
testing on each of the regions and compute the system-wide
ROC curves.

Figure 9(a) shows an example of how ROC curves of 2000
Androids evolve in time for the corner case illustrated in
Figure 7(b). We slice the surface of this figure at the false
alarm rate of 1 per year and retrieve the detection rate as
a function of time in Figure 9(b) and 9(c). The results are
compared to the baseline results computed using the naive
total association algorithm discussed in Section 7.2. These
results clearly highlight the benefit of intelligent event asso-
ciation by locality. They also touch on the tradeoffs between
delayed decision making and gain in detection confidence. In
the case with 2000 Androids (Figure 9(b)), we can fire off
alarm at T=2 second that allows us to give 10s of seconds
of early warning to surrounding cities such as Santa Bar-
bara or San Diego but with only 20% confidence. Or we can
wait till T=10 second or after to fire the alarm with ≈ 100%
confidence but give slower warnings.

While making the assumption of simple geometry about a
highly complex event such as earthquake, this study serves
as insights to the intelligent association choice based on
geospatial relationship of the sensors and the event.

8. RELATED WORK

Seismic Networks.
The Quake Catcher Network[3] is closely related to CSN;

QuakeCatcher shares the use of cheap MEMS accelerome-
ters in USB devices and laptops, however, our system dif-
fers in its use of algorithms designed to execute efficiently
on cloud computing systems and its incorporation of sta-
tistical algorithms for detecting rare events. The incorpo-
ration of mobile phones, which pose their own challenges
distinct from those of USB devices, also distinguishes this
work. The NetQuakes project[17] is related in its deploy-
ment of expensive stand-alone seismographs at the homes
of community volunteers. The more expensive devices em-
ployed by NetQuakes make different tradeoffs between cost
and accuracy than the sensors used by CSN.
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Figure 9: Detection of a M5.5 event with (b) 2000 Androids and (c) 20 Phidgets in the three scenarios
described in Figure 7. This result guarantee at most 1 false alarm per year at the system-wide level. Results
computed using the geocell-based association algorithm are compared to those using the naive algorithm.

Community and Participatory Sensing.
CSN is not alone in its use of sensors owned and operated

by citizen scientists to aid in research. Some projects [18,
19] have incorporated mobile phones to monitor traffic and
road conditions while others [20, 21] use community sen-
sors for environmental monitoring by obtaining up-to-date
measurements of the conditions participants are exposed to.
Like CSN, these applications stand to be benefit from high
sensor densities, but their aims of monitoring ongoing phe-
nomena rather than detecting rare events makes them dis-
tinct.

Distributed and Decentralized Detection.
The classical hierarchical hypothesis testing approach has

been analyzed by Tsitsiklis [22]. Chamberland et al. [23]
study classical hierarchical hypothesis testing under band-
width constraints. Their goal is to minimize the probabil-
ity of error, under constraint on total network bandwidth.
Martinic et al. [24] perform distributed detection on multi-
hop networks by clustering nodes into cells, and comparing
observations within a cell to a user-supplied “event signa-
ture.” The communication requirements of these detection
algorithms cannot be met in community sensing applica-
tions since sensors cannot communicate with neighbors due
to privacy and security restrictions.

Anomaly Detection.
There has also been a great deal of research on anomaly

detection in the statistics, machine learning, and complex-
event processing communities. Yamanishi et al. [25] develop
the SmartSifter approach that uses Gaussian or kernel mix-
ture models to efficiently learn anomaly detection models in
an online manner. Davy et al. [26] develop an online ap-
proach for anomaly detection using online Support Vector
machines. One of their experiments is to detect anomalies
in accelerometer recordings of industrial equipment. They
use produce frequency-based (spectrogram) features, simi-
lar to the features we use. However, their approach assumes
the centralized setting. Subramaniam et al. [27] develop
an approach for online outlier detection in hierarchical sen-
sor network topologies. This approach is not suitable for
the community sensing communication model, where each

sensor has to make independent decisions. Onat et al. [28]
develop a system for detecting anomalies based on sliding
window statistics in mobile ad hoc networks (MANETs).
However, their approach requires nodes to share observa-
tions with their neighbors, and so may not be suitable under
the privacy constraints inherent in community sensing.

9. CONCLUSION
This paper presents results from an ongoing multi-year

project carried out by researchers in geology, civil engineer-
ing, and computer science. We presented initial steps at
meeting a grand challenge: building DEB systems that save
thousands of lives by improving responses to disasters. The
architecture, analysis of tradeoffs, and new theory presented
in this paper were applied to the specific problem of respond-
ing to earthquakes. The results are, however, applicable to
responses to many rapidly evolving crises.

The unfolding catastrophe due to the earthquake, tsunami,
fires, and nuclear reactor explosions in Japan provides an im-
mediate and stark example of information technology saving
lives. The community, as a whole, participated in the re-
sponse. This paper described how community-based event-
detection systems, in which individual members of the com-
munity install and operate sensors and responders, can help
society to deal with disasters collectively.

Important trends over the last five years include widespread
use of cellphones and cloud computing services in all parts
of the world. Even people in remote rural parts of develop-
ing economies use phones and cloud services such as those
that provide weather information. This paper showed how
these trends can be exploited to deploy event-based appli-
cations anywhere in the world, especially economically dis-
advantaged areas.
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